109 research outputs found

    Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway

    Get PDF
    The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow

    Experimental and Numerical Investigation of Phase Separation due to Multi-Component Mixing at High-Pressure Conditions

    Full text link
    [EN] Experiments and numerical simulations were carried out in order to contribute to a better understanding and prediction of high-pressure injection into a gaseous environment. Specifically, the focus was put on the phase separation processes of an initially supercritical fluid due to the interaction with its surrounding. N-hexane was injected into a chamber filled with pure nitrogen at 5 MPa and 293 K and three different test cases were selected such that they cover regimes in which the thermodynamic non-idealities, in particular the effects that stem from the potential phase separation, are significant. Simultaneous shadowgraphy and elastic light scattering experiments were conducted to capture both the flow structure as well as the phase separation. In addition, large-eddy simulations with a vaporliquid equilibrium model were performed. Both experimental and numerical results show phase formation for the cases, where the a-priori calculation predicts two-phase flow. Moreover, qualitative characteristics of the formation process agree well between experiments and numerical simulations and the transition behaviour from a dense-gas to a spray-like jet was captured by bothThe authors gratefully acknowledge the German Research Foundation (Deutsche Forschungsgemeinschaft) for providing financial support in the framework of SFB/TRR 40. Financial support was also provided by Munich Aerospace (www.munich-aerospace.de). Furthermore, the authors thank the Gauss Centre for Supercomputing e.V. (GCS) (www.gauss-centre.eu) for supporting this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de).Traxinger, C.; Müller, H.; Pfitzner, M.; Baab, S.; Lamanna, G.; Weigand, B.; Matheis, J.... (2018). Experimental and Numerical Investigation of Phase Separation due to Multi-Component Mixing at High-Pressure Conditions. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 130-137. https://doi.org/10.4995/ILASS2017.2017.4756OCS13013

    Robust Stabilization of Elastic Joint Robots by ESP and PID Control: Theory and Experiments

    Get PDF
    This work addresses the problem of global set-point control of elastic joint robots by combining elastic structure preserving (ESP) control with non-collocated integral action. Despite the popularity and extensive research on PID control for rigid joint robots, such schemes largely evaded adoption to elastic joint robots. This is mainly due to the underactuation inherent to these systems, which impedes the direct implementation of PID schemes with non-collocated (link position) feedback. We remedy this issue by using the recently developed concept of “quasi-full actuation,” to achieve a link-side PID control structure with “delayed” integral action. The design follows the structure preserving design philosophy of ESP control and ensures global asymptotic stability and local passivity of the closed loop. A key feature of the proposed controller is the switching logic for the integral action that enables the combination of excellent positioning accuracy in free motion with compliant manipulation in contact with the environment. Its performance is evaluated on an elastic joint testbed and a compliant robot arm. The results demonstrate that elastic robots may achieve positioning accuracy comparable to rigid joint robots

    A Gravity Compensation Strategy for On-ground Validation of Orbital Manipulators

    Get PDF
    The on-ground validation of orbital manipulators is a challenging task because the robot is designed for a gravity-free operational environment, but it is validated under the effect of gravity. As a consequence, joint torque limits can be easily reached in certain configurations when gravity is actively compensated by the joints. Hence, the workspace for on-ground testing is restricted. In this paper, an optimal strategy is proposed for achieving gravity compensation of an orbital manipulator arm on ground. The strategy minimizes the joint torques acting on the manipulator by solving an optimization problem and it computes the necessary forces to be tracked by an external carrier. Hence, full gravity compensation is achieved for the orbital manipulator. Experimental results validate the effectiveness of the method on the DLR CAESAR space robot, which uses a cable suspended system as external carrier to track the desired gravity compensation force, resulting from the proposed method

    Descripción de una coenoclina en el SW del Chubut

    Get PDF
    p.163-171El presente trabajo se orienta a la determinación de la influencia de las precipitaciones sobre la composición de las comunidades vegetales en el SW del Chubut. Estas forman un continuum de vegetación o coenoclina, determinada por un gradiente de precipitaciones crecientes de E a W. Dentro de la misma se trató de determinar rangos intrínsecamente homogéneos, con el fin de poder estudiar dentro de cada uno de ellos caracteres de la comunidad vegetal, especialmente los relacionados con el uso pasturil, sin interferencias del factor humedad. Con ese objetivo se realizaron en la región 43 censos en clausuras y en potreros que no presentan signos de deterioro. Estos censos se ordenaron en forma directa a través del método de los índices de ponderación de las especies. El ordenamiento así obtenido permitió la partición de la coenoclina en 7 segmentos, dentro de los cuales no se aprecia variaciones florísticas importantes. Resultó evidente la relación entre los cambios florísticos y el gradiente de precipitaciones en los sectores occidental y central, mientras que en el oriental no se observó tal relación por lo que se supuso que son otros los factores ambientales que condicionan la composición de las comunidades

    Dynamic force microscopy for imaging of viruses under physiological conditions

    Get PDF
    Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized

    Response Monitoring in De Novo Patients with Parkinson's Disease

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is accompanied by dysfunctions in a variety of cognitive processes. One of these is error processing, which depends upon phasic decreases of medial prefrontal dopaminergic activity. Until now, there is no study evaluating these processes in newly diagnosed, untreated patients with PD ("de novo PD"). METHODOLOGY/PRINCIPAL FINDINGS: Here we report large changes in performance monitoring processes using event-related potentials (ERPs) in de novo PD-patients. The results suggest that increases in medial frontal dopaminergic activity after an error (Ne) are decreased, relative to age-matched controls. In contrast, neurophysiological processes reflecting general motor response monitoring (Nc) are enhanced in de novo patients. CONCLUSIONS/SIGNIFICANCE: It may be hypothesized that the Nc-increase is at costs of dopaminergic activity after an error; on a functional level errors may not always be detected and correct responses sometimes be misinterpreted as errors. This pattern differs from studies examining patients with a longer history of PD and may reflect compensatory processes, frequently occurring in pre-manifest stages of PD. From a clinical point of view the clearly attenuated Ne in the de novo PD patients may prove a useful additional tool for the early diagnosis of basal ganglia dysfunction in PD

    Altered Error Processing following Vascular Thalamic Damage: Evidence from an Antisaccade Task

    Get PDF
    Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response – the error-related negativity (ERN) - as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring. By relaying saccade-related efference copy signals, the thalamus appears to enable fast error processing. Furthermore early error processing based on internal information may contribute to error awareness which was reduced in the patients
    corecore